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A solution of the problem of the diffraction of harmonic elastic waves by a thin rigid strip-like delaminated inclusion in an 
unbounded elastic medium, in which the conditions for plane deformation are satisfied, is proposed. We mean by a delaminated 
inclusion an inclusion, one side of which is completely bonded to the elastic medium, while the second does not interact in any 
way with it, or this interaction is partial. It is assumed that the conditions for smooth contact are satisfied in the delamination 
region. The method of solution is based on the use of previously constructed discontinuous solutions of the equations describing 
the vibrations of an elastic medium under plane deformation conditions. The problem therefore reduces to solving a system of 
three singular integral equations in the unknown stress and strain jumps at the inclusion. An approximate solution of the latter 
enabled formulae to be obtained that are convenient for numerical realization when investigating the stressed state in the region 
of the inclusion and its displacements when acted upon by incident waves. © 1998 Elsevier Science Ltd. All rights reserved. 

1. Suppose an elastic medium, which is in a state of plane deformation, contains a thin rigid inclusion, 
situated in the xy plane in the section y = 0, I x I ~< a. At y = -0  it is completely bonded to the elastic 
medium, and at y --: +0 it is peeled off, and at this boundary the conditions for smooth contact are 
satisfied. This means that the following boundary conditions are satisfied on the inclusion 

Xyx(x,+O)=O, u(x , i ,0 )=5  t + ~ ,  u(x, -0)= 8 2 Ixl<~ a (1.1) 

Moreover, the stresses and strains undergo discontinuities along the line on which the inclusion is 
situated. We will denote the jumps at the discontinuities as follows: 

(Oy> = Zl(x), (X).x) = Z2(x), (v) = 0, (u) = Z4(x) l x I~ a (1.2) 

The angular brackets in (1.2) mean the same as in [I]. Plane longitudinal or transverse waves interact 
with the inclusion. The waves are specified by the following potentials 

A B 
q~O(x,Y) = ~ e l ( x , Y ) ,  ~/o(x,Y) =--e2(x ,Y)  (1.3) 

7~1 ~2 

PO) 2 ~2 = Pc 02 
ek(x'Y) = exp[ixk(xc°s0° +ysin0°) '  x2 = Z +  21.t' IX 

where 00 is the ang]te between the direction of the wave propagation and the x axis, and co is the oscillation 
frequency. The factor e -i~ is omitted everywhere. 

The constants 5~, 52, 7 describe the translational and rotational motions of the inclusion and remain 
to be determined. To do this the following equalities are obtained from the equations of motion of the 
inclusion as a rigid body 

m~jfO 2 = - ] ~ j ( x ) d , x ,  j = 1,2; 4ma2coUy = SXZI(x)dx (1.4) 
3 

where m is the mass per unit length of the inclusion, and integration over x (and below over rl also) is 
carried out in the section [-a, a]. 
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In addition we have the equality 

I Z~(x),/x = 0 (1.5) 

To solve the problem we will represent the resultant displacement and stress field in the following 
form 

T(x, y) = Tl(x, y) + To(x, y) (1.6) 

T k (x,y) = [t~ (x,y)] - k J: --[($y,'~yx,yk,uk], k=0,1  

The vector Tl(x, y) is defined by the discontinuous solution (1.2) from [1] with jumps (1.2), while the 
components of the vector To(x,y) are the stresses and displacements due to the longitudinal or transverse 
wave (1.3) propagating in the medium and are given by (2.11) and (2.12) from [1]. 

The displacement and stress field in the medium is obviously uniquely defined by (1.6), after the 
unknown jumps (1.2) have been determined. To do this, as in [1], we replace conditions (1.1) by 
equivalent conditions, which, after substituting (1.6) into them, take the form 

tlv(x,+O)=-t~(x,+O), t~ (x,:L'O)=T-t ~ (x,!-O) 

4 (x,-O) =- t °  (x,--O), I x l ~ a  (1.7) 

t~ (-a,£'O) = Si - Ta - t° (-a,_+O), ,l (-a,-O) = ~)2 - t° (-a,-O) 

We substitute the values of the components of the vector T1, defined in (1.2) [1] into the first three 
equations of (1.7). Here we must take into account the following formulae for the limiting values, which 
arise from the properties of discontinuous solutions 

. t 1 f AZ(r~) 
( x , ~ )  = + ~ Z ( ~ ) + T ~ -  ~-x a~+'~nfW(n-x)Z(~)~ ( 1 . 8 )  

where, in the case considered, Z(rl) = [zl(rl), g2(q), 0, g'a(rl)] r and A is a numerical matrix, the 
elements of which are expressed in terms of the elasticity constants of the medium, containing the 
inclusion, while the elements of the functional matrix W(z) = {Wik} (j, k = 1, 2, 3, 4) are found from 
the formulae 

W~<z) = wjs_j<z) = 0 

/ x 2 m - I  / x 2 m - I  

Wjt . (Z '=~A'~(2)  + In ' z ' ~ ' . B ~ Z |  , j ,k  = 1,2,3,4 
" m \ 2 )  

(1.9) 

Here and below the summation over m is carried out from 1 to ~. When obtaining (1.9) we used formulae 
(1.3)-(1.5) from [1], and also the well-known representations for Hankel functions in the form of power 
series [2]. 

As a result of the relatively unknown jumps, a system of three singular integral equations is obtained, 
the matrix form of which is (integration over ~ is carried out in the interval [-1, 1]) 

B(I) + QF(I)  + R(I) = F 

F*  = - ~  I dp(.x. t dx, R*  = -~  J R('c- t)*(x)d~ 

q)(x) = [(Pl (z), (P2 (t:), (P3 (x)] r, F(t) = [ft (t), f2 (t), A (t)] r 

(pj (x) = I.t-lXz (ax), (p2(x) = g-l)~2(ax), (p3(x) = ~'4(ax) 
• P 

f~(t) = -~t-lX°x(at,+O), f2(t) = T - o °  (at, O), f3(t) = - u  ° (at,0) 

(1.10) 

The non-zero elements of the third-order matrices B, Q and R are 
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b 1 2 = l ~ ,  b 3 1 = - I ~ ,  q l l = q 2 3 = - [  2, q l 3 = 2 ( 1 - ~  2) 

q2i = q23 = - (1 + ~2)f2, ~ = c l / c  2 

R I I ( ' C  - t )  = a W 2 1 [ a ( ' c  - t)], Ri3('c - t) = a l x W e 4 [ a ( ' t  - t)] 

R ~ l ( ' c  - t )  = a W 1 3 [ a ( z  - t)], R ~ ( z -  t) = a W ~ 4 [ a ( ' ~  - t)] 

R32('~ - t) = a W 4 2 [ a ( ' ~  - t)] 

We similarly obtain from the remaining equalities (1.7) 

1 ~ f~l (X)[--q32 ln(x + 1) + l-Iil(X + 1)]d~ + 

+ 2-~ ~ tp2 (X)[-q23 ln('~ + 1) + Fll2(x + 1)]dx = 801 - y + foI 

~ tP2 ('c)[-ql3 ln(x + 1) + H22(x + 1)]dx = 502 + f02 

m/',~+ 1"~ 2m / ,~+  1"~ 2m 
rl./, (,l: + l ) :  ~ p./, t T j  +ln T M  m 2 .z"i, t T J  

(1.11) 

2. To solve system (1.10) simultaneously with (1.11) we multiply both sides of (1.10) by the matrix 
Q-1 (the latter exists ~ince det Q ~ 0). We obtain 

C~ + EF~ + Q-~R~ --- Q-IF (2.1) 

where C + Q-IB and E is the third-order identity matrix. After this, as was done in [3] when solving a 
similar problem in a static formulation, we introduce the unknown functions Wj(x) (j = I, 2, 3), defined 
by the equalities 

~t(x) = P-IO(x), O(x) = PW(x) (2.2) 

~I'(x) = [~i (x), ¥2 (x), ~3(x)] r 

The  matrix P is constructed in such a way that P-~CP = D, while D is a third-order diagonal matrix. 
Since the eigenvalues of the matrix C are different, this matrix exists and can easily be constructed [4]. 
Here the diagonal elements of the matrix D are 

all =~,1 =0, d22 =~,2 = -½ ,  d33 =~.3 =½ 

Substituting (2.2) iLnto (2.1) and multiplying the equation obtained by p-l ,  we arrive at the following 
system of singular integral equations (summation over i is carried out from 1 to 3) 

~'kWk(t)+~-JWk(X) d~+-l ~,lLn(x-t)¥ifx)a~=cky+g~(t),t~[-1,1l, k=l,2,3 (2.3) 
~ - t  2 ~  i 

L = {L~} =-" P-IQ-IRP, G = {gk} = PQ-IF 

2 -I c I =--.4q~i t, c.~ = qllq:zl, c3 =-2qH 

It is necessary to consider system (2.3) simultaneously with Eqs (1.11), (1.4) and (1.5), which, after 
introducing the new unknowns (2.2), contain integrals with a logarithmic singularity 

Ik = S Vk (X) ln(x + 1)dx, k = 1, 2, 3 (2.4) 

The solution of  system (2.3) in the class of functions having integrable singularities [5, 6], can be 
expanded in the form 

~k(x) =COk(X)wk(x), COk(X) =(1.-X) ~k ( l+x)  13k k = 1,2,3 (2.5) 
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where ctk is the root of the equation 

~., +c tga~ /2  =0, -1  <~t, <0, ~t, +1~ = - 1  

In the case of system (2.3) we obtain 

{Xl-~[~1 =--1/2' ~2----~3 =--1/4' C~3----[~2 ------'~4 

We approximate the functions wk(t) by polynomials of the best approximation 

Pn a*'l~* (t) , k = 1,2,3 (2.6) 
wk (t) = Gn, (t) = Zm WIon (t - "Clan )[Pn Otk "~Jk (Xkm)]" 

Wkra = Wk(X/~n), P~n' ~ (t) are Jacobi polynomials of the nth degree, orthogonal with weight tok(t ) and 
x~n are the roots of these polynomials. 

If to,(t) are represented by formulae (2.5) and (2.6), we have the following quadrature formulae for 
the singular integral operators [7] 

a'kV~(tki)+ 2X" X--tk~ E b ~  z ~  -tkj 

rcPn~k'-~k (Xkra) k = 1,2,3 
bkra = 2 sin go~ k [ pnak,f~k ( X ~n ) ], ' 

(2.7) 

Approximate values can be obtained for integrals (2.4) if we replace c0k(t) using formulae (2.5) and 
(2.6). As a result we obtain 

!9(x + 1)pff~,l~, ('c)o~, (x) dx, 
]k = ECT~anWkm'm G~m -~" f (~ _~km)[pnUk,f~k C g k r a ) ] ,  k = 1,2,3 (2.8) 

The integrals ~ can be evaluated by a method specially developed for singular integrals, which 
contain orthogonal polynomials, described in [3]. 

If we now use relations (2.7) and (2.8) and the regular integrals are replaced by sums using the 
Gauss--Jacobi quadrature formulae with appropriate weight [8] tok(x) (k = 1, 2, 3), we obtain the following 
system of linear algebraic equations 

Eb~ w~ 1 
+ _--- Y.Ebirawi.Lkifxi .  -t~)= 

m "t/a n -- t~ 2~  i m 

=ckT+gk( tk j ) ,  j = l , 2  ..... n - l ;  k=1,2,3 

1 
alp ~ t~raWlm + 7"-~, vf, birawimCli(1 + 'gira) = S01 - T + f01 - 

8~ 2/1~ ira 

n 1 n 
--O'll8~ ~ (~ 2 ra W 2 m -- ~'~ ~ G 3 ra w 3 + 

1 
q ' : ' -  E ~ birawiraC2i(l + "[ira) = ~02 + f02 

~Z~ i m 

-~blraWimm "!" 1~21 '~" b2raW2rnm --~-Lllll~'~mb3raw3ra = 4~01 m°k~ 

-E xl.l~raw,. +fhl~;.x2rab2.w2. f2v-E x3ra~raw3ra 16 2 
m m Gll m 

Eb2mw2ra + o~I ~ ~w3ra = '~o2mo ~2 - oz~E ~ . w ~ .  +Y hra~3. = o 
m m m m 

(2.9) 
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Solving system (2.9) we obtain Wk~ (k = 1, 2, 3; m = 1, 2 . . . . .  n) and 601, 802, 7, which enables us to 
investigate the displacements and stresses in the medium containing the inclusion numerically. 

We will take as the ,quantity characterizing the stress concentration in the region of the ends of  the 
inclusion, as in [9, 10], the coefficients of the singularities of the stress jumps at the inclusion, which 
can be calculated from the formulae 

K~ = limt(l +x) ~ zJ(ax) = limt(1 +x)3Atpj(x); j = 1,2 
~t 

After substituting (2.5) and (2.6) into this equation and taking the limit we obtain 

K~: = 2 -~ l~nS  *, K~: = :V.2-~S±; S + = On2(1), S- = G.3(-l~ (2.10) 

It can be seen that the stressed state in the elastic medium near the ends of the inclusion is determined 
by S -+. 

The results of a numerical analysis of the displacements of the inclusion are shown in Figs 1 and 2. 
In Fig. 1 we show the absolute values of the dimensionless amplitudes of the vibrations of the inclusions 
I 601 I, I 602 l, I ~/I as a function of the dimensionless frequency ×0 = ×2a. Curve 1 shows the change in 
1 6ol I when a longitudinal wave interacts with the inclusion. It is assumed that the wave propagates at 
an angle 00 = n/2 (the wave is incident on the bonded side of the inclusion) and at an angle 0o -- 3n/2 
(the wave is incident on the peeling side of the inclusion). In both cases the values of [ 601 [ are the 
same, while 1 6o21 = [Y I = 0. Curves 2 show the change in 1 8o21 when 0o = n/2 (the continuous curve) 
and 0o = 3~r/2 (the dashed curve). The change in 171 when a transverse wave is incident on the inclusion 
at an angle 00 = 7r/2 and 00 = 3~t/2 is represented by curves 3, where 1 8ol t = 0. 

The results of an investigation of the amplitude of the vibrations of the inclusion as a function of  the 
angle of incidence of the wave for a fixed frequency ×0 = 2 are shown in Fig. 2, where the continuous 
curves correspond to a longitudinal wave incident on the inclusion while the dashed curves correspond 
to the incidence of a transverse wave. Curves 1-3 show the change in l 801 1, J 8021, ] 7 I. Where longitudinal 
waves propagate 1 801 has its maximum values when [ 802 I, while 00 = - n/4 and I~'1 have their maximum 
values when 0o = ± re/4. If transverse waves propagate, I 601 I reaches a maximum when 00 = --- 7r/4, 
I 8021 reaches a maximum 00 = ... n/2 and 1 7 1 reaches a maximum when 00 = 0. 

Figure 3 shows the absolute values of the coefficients of the stress singularities [ S-* [ as a function of 
frequency. Curves 1 and 2 represent this relationship when a transverse wave, propagating at angles o f  
0o = n/2 and 00 = 3rd2, respectively, is diffracted by the inclusion. In this case S ÷ = S-. The presence 
of a maximum when ×0 > 2 is of interest. When longitudinal waves, incident at the same angles, are 
diffracted, the values of S ÷ and S- are close to zero. Curves 3 illustrate the change in ] S + I as the frequency 
increases for transvel~se waves, while curves 4 illustrate the change for longitudinal waves incident at 
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an angle 00 = 0. The continuous curves show the change in I S-I and the dashed curves represent the 
change in IS + J. 

In Fig. 4 we show graphs of  I S-[ (the continuous curves) and J S÷ J (the dashed curves) against the 
angle of incidence 00 for longitudinal waves (curves 1) and transverse waves (curves 2) for a fixed 
frequency ×0 = 2. When longitudinal waves are diffracted the maximum values of I S-*I occur at 
0o --- - 3n/20, while the minimum values occur at 00 = - ~/2. If a transverse wave interacts with the 
inclusion, the greatest values of l S-- J are observed when 00 = --+ 2n/5, and the least values are observed 
when 00 = - 3n/20. 
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